Minimal covering of all chords of a conic in $PG(2,q)$, $q$ even
Aguglia, A. ; Korchmáros, G. ; Siciliano, A.
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 651-655 / Harvested from Project Euclid
In this paper we determine the minimal blocking sets of chords of an irreducible conic $\mathcal C$ in the desarguesian projective plane $PG(2,q)$, $q$ even. Similar results on blocking sets of external lines, as well as of nonsecant lines, are given in [1], [3], and [2].
Publié le : 2006-01-14
Classification: 
@article{1136902603,
     author = {Aguglia, A. and Korchm\'aros, G. and Siciliano, A.},
     title = {Minimal covering of all chords of a conic in $PG(2,q)$, $q$ even},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 651-655},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1136902603}
}
Aguglia, A.; Korchmáros, G.; Siciliano, A. Minimal covering of all chords of a conic in $PG(2,q)$, $q$ even. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  651-655. http://gdmltest.u-ga.fr/item/1136902603/