Ricci flow on Kähler-Einstein manifolds
Chen, X. X. ; Tian, G.
Duke Math. J., Tome 131 (2006) no. 1, p. 17-73 / Harvested from Project Euclid
This is the continuation of our earlier article [10]. For any Kähler-Einstein surfaces with positive scalar curvature, if the initial metric has positive bisectional curvature, then we have proved (see [10]) that the Kähler-Ricci flow converges exponentially to a unique Kähler-Einstein metric in the end. This partially answers a long-standing problem in Ricci flow: On a compact Kähler-Einstein manifold, does the Kähler-Ricci flow converge to a Kähler-Einstein metric if the initial metric has positive bisectional curvature? In this article we give a complete affirmative answer to this problem
Publié le : 2006-01-15
Classification:  53C44,  32Q20,  53C25,  53C55
@article{1134666121,
     author = {Chen, X. X. and Tian, G.},
     title = {Ricci flow on K\"ahler-Einstein manifolds},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 17-73},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1134666121}
}
Chen, X. X.; Tian, G. Ricci flow on Kähler-Einstein manifolds. Duke Math. J., Tome 131 (2006) no. 1, pp.  17-73. http://gdmltest.u-ga.fr/item/1134666121/