Combinatorial and geometrical properties of a class of tilings
Messaoudi, Ali
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 625-633 / Harvested from Project Euclid
In this paper, we consider a tiling generated by a Pisot unit number of degree $d \geq 3$ which has a finite expansible property. We compute the states of a finite automaton which recognizes the boundary of the central tile. We also prove in the case $d=3$ that the interior of each tile is simply connected.
Publié le : 2005-12-14
Classification:  Tiling,  Automata,,  quaternion algebra,  Pisot number,  11B39,  52C22,  68Q70
@article{1133793349,
     author = {Messaoudi, Ali},
     title = {Combinatorial and geometrical properties of a class of tilings},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 625-633},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1133793349}
}
Messaoudi, Ali. Combinatorial and geometrical properties of a class of tilings. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  625-633. http://gdmltest.u-ga.fr/item/1133793349/