Attainable lengths for circular binary words avoiding $k$ powers
Aberkane, Ali ; Currie, James D.
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 525-534 / Harvested from Project Euclid
We show that binary circular words of length $n$ avoiding $7/3^+$ powers exist for every sufficiently large $n$. This is not the case for binary circular words avoiding $k^+$ powers with $k<7/3$.
Publié le : 2005-12-14
Classification:  circular words,  Dejean's conjecture,  Thue-Morse word,  68R15
@article{1133793340,
     author = {Aberkane, Ali and Currie, James D.},
     title = {Attainable lengths for circular binary words avoiding $k$ powers},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 525-534},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1133793340}
}
Aberkane, Ali; Currie, James D. Attainable lengths for circular binary words avoiding $k$ powers. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  525-534. http://gdmltest.u-ga.fr/item/1133793340/