We show that binary circular words of length $n$
avoiding $7/3^+$ powers exist for every sufficiently large $n$.
This is not the case for binary circular words avoiding $k^+$
powers with $k<7/3$.
Publié le : 2005-12-14
Classification:
circular words,
Dejean's conjecture,
Thue-Morse word,
68R15
@article{1133793340,
author = {Aberkane, Ali and Currie, James D.},
title = {Attainable lengths for circular binary words avoiding $k$ powers},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {11},
number = {5},
year = {2005},
pages = { 525-534},
language = {en},
url = {http://dml.mathdoc.fr/item/1133793340}
}
Aberkane, Ali; Currie, James D. Attainable lengths for circular binary words avoiding $k$ powers. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp. 525-534. http://gdmltest.u-ga.fr/item/1133793340/