Linear systems on generic $K3$ surfaces
De Volder, Cindy ; Laface, Antonio
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 481-489 / Harvested from Project Euclid
In this paper we prove the equivalence of two conjectures on linear systems through fat points on a generic $K3$ surface. The first conjecture is exactly as Segre conjecture on the projective plane. Whereas the second characterizes such linear system and can be compared to the Gimigliano-Harbourne-Hirschowitz conjecture.
Publié le : 2005-12-14
Classification:  Linear systems,  fat points,  generic $K3$ surfaces,  14C20,  14J28
@article{1133793336,
     author = {De Volder, Cindy and Laface, Antonio},
     title = {Linear systems on generic $K3$ surfaces},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 481-489},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1133793336}
}
De Volder, Cindy; Laface, Antonio. Linear systems on generic $K3$ surfaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  481-489. http://gdmltest.u-ga.fr/item/1133793336/