Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture
Arakawa, Tomoyuki
Duke Math. J., Tome 126 (2005) no. 1, p. 435-478 / Harvested from Project Euclid
We study the representation theory of the superconformal algebra $\mathcal{W}_k(\mathfrak{g},f_{\theta})$ associated with a minimal gradation of $\frak{g}$ . Here, $\frak{g}$ is a simple finite-dimensional Lie superalgebra with a nondegenerate, even supersymmetric invariant bilinear form. Thus, $\mathcal{W}_k(\mathfrak{g},f_{\theta})$ can be one of the well-known superconformal algebras including the Virasoro algebra, the Bershadsky-Polyakov algebra, the Neveu-Schwarz algebra, the Bershadsky-Knizhnik algebras, the $N=2$ superconformal algebra, the $N=4$ superconformal algebra, the $N=3$ superconformal algebra, and the big $N=4$ superconformal algebra. We prove the conjecture of V. G. Kac, S.-S. Roan, and M. Wakimoto [17, Conjecture 3.1B] for $\mathcal{W}_k(\frak{g},f_{\theta})$ . In fact, we show that any irreducible highest-weight character of $\mathcal{W}_k(\frak{g},f_{\theta})$ at any level $k\in mathbb{C}$ is determined by the corresponding irreducible highest-weight character of the Kac-Moody affinization of $\frak{g}$
Publié le : 2005-12-01
Classification:  17B68,  17B10,  17B55,  17B69
@article{1133447439,
     author = {Arakawa, Tomoyuki},
     title = {Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture},
     journal = {Duke Math. J.},
     volume = {126},
     number = {1},
     year = {2005},
     pages = { 435-478},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1133447439}
}
Arakawa, Tomoyuki. Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture. Duke Math. J., Tome 126 (2005) no. 1, pp.  435-478. http://gdmltest.u-ga.fr/item/1133447439/