Estimation of sums of random variables: Examples and information bounds
Zhang, Cun-Hui
Ann. Statist., Tome 33 (2005) no. 1, p. 2022-2041 / Harvested from Project Euclid
This paper concerns the estimation of sums of functions of observable and unobservable variables. Lower bounds for the asymptotic variance and a convolution theorem are derived in general finite- and infinite-dimensional models. An explicit relationship is established between efficient influence functions for the estimation of sums of variables and the estimation of their means. Certain “plug-in” estimators are proved to be asymptotically efficient in finite-dimensional models, while “u,v” estimators of Robbins are proved to be efficient in infinite-dimensional mixture models. Examples include certain species, network and data confidentiality problems.
Publié le : 2005-10-14
Classification:  Empirical Bayes,  sum of variables,  utility,  efficient estimation,  information bound,  influence function,  species problem,  networks,  node degree,  data confidentiality,  disclosure risk,  62F10,  62F12,  62G05,  62G20,  62F15
@article{1132936555,
     author = {Zhang, Cun-Hui},
     title = {Estimation of sums of random variables: Examples and information bounds},
     journal = {Ann. Statist.},
     volume = {33},
     number = {1},
     year = {2005},
     pages = { 2022-2041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1132936555}
}
Zhang, Cun-Hui. Estimation of sums of random variables: Examples and information bounds. Ann. Statist., Tome 33 (2005) no. 1, pp.  2022-2041. http://gdmltest.u-ga.fr/item/1132936555/