On the solution of $x^2-dy^2=\pm m$
Basilla, Julius M. ; Wada, Hideo
Proc. Japan Acad. Ser. A Math. Sci., Tome 81 (2005) no. 3, p. 137-140 / Harvested from Project Euclid
An improvement of the Gauss' algorithm for solving the diophantine equation $x^2-dy^2=\pm m$ is presented. As an application, multiple continued fraction method is proposed.
Publié le : 2005-10-14
Classification:  Quadratic form,  diophantine equation,  continued fraction method,  prime decomposition,  11D09,  11Y05,  11Y16
@article{1130858932,
     author = {Basilla, Julius M. and Wada, Hideo},
     title = {On the solution of $x^2-dy^2=\pm m$},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {81},
     number = {3},
     year = {2005},
     pages = { 137-140},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1130858932}
}
Basilla, Julius M.; Wada, Hideo. On the solution of $x^2-dy^2=\pm m$. Proc. Japan Acad. Ser. A Math. Sci., Tome 81 (2005) no. 3, pp.  137-140. http://gdmltest.u-ga.fr/item/1130858932/