Sharp $L^p$ Carleman estimates and unique continuation
Dos Santos Ferreira, David
Duke Math. J., Tome 126 (2005) no. 1, p. 503-550 / Harvested from Project Euclid
We prove sharp $L^p$ Carleman estimates and the corresponding unique continuation results for second-order real principal-type differential equations $P(x,D)u+V(x)u{=}0$ with critical potential $V \in L^{n/2}_{\rm loc}$ (where $n \geq 3$ is the dimension) across a noncharacteristic hypersurface under a pseudoconvexity assumption. Similarly, we prove unique continuation results for differential equations with potential in the Calderón uniqueness theorem's context under a curvature condition. ¶ We also investigate ( $L^p\,{-}L^{p'}$ )-estimates for non-self-adjoint pseudodifferential operators under a curvature condition on the characteristic set and develop the natural applications to local solvability for the corresponding operators with potential.
Publié le : 2005-09-15
Classification:  35B60
@article{1129729973,
     author = {Dos Santos Ferreira, David},
     title = {Sharp $L^p$ Carleman estimates and unique continuation},
     journal = {Duke Math. J.},
     volume = {126},
     number = {1},
     year = {2005},
     pages = { 503-550},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1129729973}
}
Dos Santos Ferreira, David. Sharp $L^p$ Carleman estimates and unique continuation. Duke Math. J., Tome 126 (2005) no. 1, pp.  503-550. http://gdmltest.u-ga.fr/item/1129729973/