We construct the finitely generated free algebras and determine the free
spectra of varieties of linear equivalential algebras and linear equivalential
algebras of finite height corresponding, respectively, to the equivalential
fragments of intermediate Gödel-Dummett logic and intermediate
finite-valued logics of Gödel. Thus we compute the number of purely
equivalential propositional formulas in these logics in n variables for an
arbitrary n∈ℕ.
@article{1129642128,
author = {S\l omczy\'nska, Katarzyna},
title = {Free spectra of linear equivalential algebras},
journal = {J. Symbolic Logic},
volume = {70},
number = {1},
year = {2005},
pages = { 1341-1358},
language = {en},
url = {http://dml.mathdoc.fr/item/1129642128}
}
Słomczyńska, Katarzyna. Free spectra of linear equivalential algebras. J. Symbolic Logic, Tome 70 (2005) no. 1, pp. 1341-1358. http://gdmltest.u-ga.fr/item/1129642128/