The disjunction and related properties for constructive Zermelo-Fraenkel set theory
Rathjen, Michael
J. Symbolic Logic, Tome 70 (2005) no. 1, p. 1233-1254 / Harvested from Project Euclid
This paper proves that the disjunction property, the numerical existence property, Church’s rule, and several other metamathematical properties hold true for Constructive Zermelo-Fraenkel Set Theory, CZF, and also for the theory CZF augmented by the Regular Extension Axiom. ¶ As regards the proof technique, it features a self-validating semantics for CZF that combines realizability for extensional set theory and truth.
Publié le : 2005-12-14
Classification:  Constructive set theory,  realizability,  metamathematical property,  03F50,  03F35
@article{1129642124,
     author = {Rathjen, Michael},
     title = {The disjunction and related properties for constructive Zermelo-Fraenkel set theory},
     journal = {J. Symbolic Logic},
     volume = {70},
     number = {1},
     year = {2005},
     pages = { 1233-1254},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1129642124}
}
Rathjen, Michael. The disjunction and related properties for constructive Zermelo-Fraenkel set theory. J. Symbolic Logic, Tome 70 (2005) no. 1, pp.  1233-1254. http://gdmltest.u-ga.fr/item/1129642124/