The geometry of non-distributive logics
Restall, Greg ; Paoli, Francesco
J. Symbolic Logic, Tome 70 (2005) no. 1, p. 1108-1126 / Harvested from Project Euclid
In this paper we introduce a new natural deduction system for the logic of lattices, and a number of extensions of lattice logic with different negation connectives. We provide the class of natural deduction proofs with both a standard inductive definition and a global graph-theoretical criterion for correctness, and we show how normalisation in this system corresponds to cut elimination in the sequent calculus for lattice logic. This natural deduction system is inspired both by Shoesmith and Smiley’s multiple conclusion systems for classical logic and Girard’s proofnets for linear logic.
Publié le : 2005-12-14
Classification: 
@article{1129642117,
     author = {Restall, Greg and Paoli, Francesco},
     title = {The geometry of non-distributive logics},
     journal = {J. Symbolic Logic},
     volume = {70},
     number = {1},
     year = {2005},
     pages = { 1108-1126},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1129642117}
}
Restall, Greg; Paoli, Francesco. The geometry of non-distributive logics. J. Symbolic Logic, Tome 70 (2005) no. 1, pp.  1108-1126. http://gdmltest.u-ga.fr/item/1129642117/