The hyperplanes of {${DW(5,2)}$}
Pralle, Harm
Experiment. Math., Tome 14 (2005) no. 1, p. 373-384 / Harvested from Project Euclid
A (geometric) hyperplane of a geometry is a proper subspace meeting every line. We present a complete list of the hyperplane classes of the symplectic dual polar space {\small $DW(5,2)$}. Theoretical results from Shult, Pasini and Shpectorov, and the author guarantee the existence of certain hyperplanes. To complete the list, we use a backtrack algorithm implemented in the computer algebra system GAP. We finally investigate what hyperplane classes arise from which projective embeddings of {\small $DW(5,2)$}.
Publié le : 2005-05-14
Classification:  Backtrack algorithm,  dual polar spaces,  hyperplanes,  subspace lattice,  symplectic polar space,  05E15,  05E20,  51A50,  51E20
@article{1128371761,
     author = {Pralle, Harm},
     title = {The hyperplanes of {${DW(5,2)}$}},
     journal = {Experiment. Math.},
     volume = {14},
     number = {1},
     year = {2005},
     pages = { 373-384},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1128371761}
}
Pralle, Harm. The hyperplanes of {${DW(5,2)}$}. Experiment. Math., Tome 14 (2005) no. 1, pp.  373-384. http://gdmltest.u-ga.fr/item/1128371761/