The Iwasawa invariants and the higher K-groups associated to real quadratic fields
Sumida-Takahashi, Hiroki
Experiment. Math., Tome 14 (2005) no. 1, p. 307-316 / Harvested from Project Euclid
Using fast algorithms, we compute the Iwasawa invariants of {\small $\Bbb{Q}(\sqrt{f},\zeta_p)$} in the range {\small $1 < f < 200$} and {\small $3 \le p < 100,000$}. From these computational results, we obtain concrete information on the higher {\small $K$}-groups of the ring of integers of {\small $\Bbb{Q}(\sqrt{f})$}.
Publié le : 2005-05-14
Classification:  Iwasawa invariant,  K-group,  Vandiver's conjecture,  Greenberg's conjecture,  11R23,  11R70
@article{1128371756,
     author = {Sumida-Takahashi, Hiroki},
     title = {The Iwasawa invariants and the higher K-groups associated to real quadratic fields},
     journal = {Experiment. Math.},
     volume = {14},
     number = {1},
     year = {2005},
     pages = { 307-316},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1128371756}
}
Sumida-Takahashi, Hiroki. The Iwasawa invariants and the higher K-groups associated to real quadratic fields. Experiment. Math., Tome 14 (2005) no. 1, pp.  307-316. http://gdmltest.u-ga.fr/item/1128371756/