Correct selfadjoint and positive extensions of nondensely defined minimal symmetric operators
Parassidis, I. ; Tsekrekos, P.
Abstr. Appl. Anal., Tome 2005 (2005) no. 2, p. 767-790 / Harvested from Project Euclid
Let $A_{0}$ be a closed, minimal symmetric operator from a Hilbert space $\mathbb{H}$ into $\mathbb{H}$ with domain not dense in $\mathbb{H}$ . Let $\widehat{A}$ also be a correct selfadjoint extension of $A_{0}$ . The purpose of this paper is (1) to characterize, with the help of $\widehat{A}$ , all the correct selfadjoint extensions $B$ of $A_{0}$ with domain equal to $\hmmathcheck{D}(\widehat{A})$ , (2) to give the solution of their corresponding problems, (3) to find sufficient conditions for $B$ to be positive (definite) when $\widehat{A}$ is positive (definite).
Publié le : 2005-09-26
Classification: 
@article{1128345980,
     author = {Parassidis, I. and Tsekrekos, P.},
     title = {Correct selfadjoint and positive extensions of
nondensely defined minimal symmetric operators},
     journal = {Abstr. Appl. Anal.},
     volume = {2005},
     number = {2},
     year = {2005},
     pages = { 767-790},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1128345980}
}
Parassidis, I.; Tsekrekos, P. Correct selfadjoint and positive extensions of
nondensely defined minimal symmetric operators. Abstr. Appl. Anal., Tome 2005 (2005) no. 2, pp.  767-790. http://gdmltest.u-ga.fr/item/1128345980/