Critical singular problems on unbounded domains
Filho, D. C. de Morais ; Miyagaki, O. H.
Abstr. Appl. Anal., Tome 2005 (2005) no. 2, p. 639-653 / Harvested from Project Euclid
We present some results of existence for the following problem: $-\!\Delta u\!=\!\!a(x)g(u)\!+\!u|u|^{2^{*}-2}$ , $x\in \mathbb{R}^{N}\ (N\geq 3)$ , $u\in D^{1,2}(\mathbb{R}^{N})$ , where the function $a$ is a sign-changing function with a singularity at the origin and $g$ has growth up to the Sobolev critical exponent $2^{*}=2N/(N-2)$ .
Publié le : 2005-08-22
Classification: 
@article{1128345943,
     author = {Filho, D. C. de Morais and Miyagaki, O. H.},
     title = {Critical singular problems on unbounded domains},
     journal = {Abstr. Appl. Anal.},
     volume = {2005},
     number = {2},
     year = {2005},
     pages = { 639-653},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1128345943}
}
Filho, D. C. de Morais; Miyagaki, O. H. Critical singular problems on unbounded domains. Abstr. Appl. Anal., Tome 2005 (2005) no. 2, pp.  639-653. http://gdmltest.u-ga.fr/item/1128345943/