We adapt the $p$-group generation algorithm to classify small-dimensional nilpotent Lie algebras over small fields. Using an implementation of this algorithm, we list the nilpotent Lie algebras of dimension up to 9 over $\F_2$ and those of dimension up to 7 over $\F_3$ and $\F_5$.
@article{1128100128,
author = {Schneider, Csaba},
title = {A computer-based approach to the classification of nilpotent Lie algebras},
journal = {Experiment. Math.},
volume = {14},
number = {1},
year = {2005},
pages = { 153-160},
language = {en},
url = {http://dml.mathdoc.fr/item/1128100128}
}
Schneider, Csaba. A computer-based approach to the classification of nilpotent Lie algebras. Experiment. Math., Tome 14 (2005) no. 1, pp. 153-160. http://gdmltest.u-ga.fr/item/1128100128/