Moduli spaces and formal operads
Santos, F. Guillén ; Navarro, V. ; Pascual, P. ; Roig, A.
Duke Math. J., Tome 126 (2005) no. 1, p. 291-335 / Harvested from Project Euclid
Let $\overline{\mathcal{M}}_{g,l}$ be the moduli space of stable algebraic curves of genus $g$ with $l$ marked points. With the operations that relate the different moduli spaces identifying marked points, the family $(\overline{\mathcal{M}}_{g,l})_{g,l}$ is a modular operad of projective smooth Deligne-Mumford stacks $\overline{\mathcal{M}}$ . In this paper, we prove that the modular operad of singular chains $S_*(\overline{\mathcal{M}}_{};\mathbb{Q})$ is formal, so it is weakly equivalent to the modular operad of its homology $H_*(\overline{\mathcal{M}}_{};\mathbb{Q})$ . As a consequence, the up-to-homotopy algebras of these two operads are the same. To obtain this result, we prove a formality theorem for operads analogous to the Deligne-Griffiths-Morgan-Sullivan formality theorem, the existence of minimal models of modular operads, and a characterization of formality for operads which shows that formality is independent of the ground field.
Publié le : 2005-08-15
Classification:  14H10,  18D50
@article{1127831440,
     author = {Santos, F. Guill\'en and Navarro, V. and Pascual, P. and Roig, A.},
     title = {Moduli spaces and formal operads},
     journal = {Duke Math. J.},
     volume = {126},
     number = {1},
     year = {2005},
     pages = { 291-335},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1127831440}
}
Santos, F. Guillén; Navarro, V.; Pascual, P.; Roig, A. Moduli spaces and formal operads. Duke Math. J., Tome 126 (2005) no. 1, pp.  291-335. http://gdmltest.u-ga.fr/item/1127831440/