The evolution of a random vortex filament
Bessaih, Hakima ; Gubinelli, Massimiliano ; Russo, Francesco
Ann. Probab., Tome 33 (2005) no. 1, p. 1825-1855 / Harvested from Project Euclid
We study an evolution problem in the space of continuous loops in a three-dimensional Euclidean space modeled upon the dynamics of vortex lines in 3d incompressible and inviscid fluids. We establish existence of a local solution starting from Hölder regular loops with index greater than 1/3. When the Hölder regularity of the initial condition X is smaller or equal to 1/2, we require X to be a rough path in the sense of Lyons [Rev. Mat. Iberoamericana 14 (1998) 215–310, System Control and Rough Paths (2002). Oxford Univ. Press]. The solution will then live in an appropriate space of rough paths. In particular, we can construct (local) solution starting from almost every Brownian loop.
Publié le : 2005-09-14
Classification:  Vortex filaments,  rough path theory,  path-wise stochastic integration,  60H05,  76B47
@article{1127395875,
     author = {Bessaih, Hakima and Gubinelli, Massimiliano and Russo, Francesco},
     title = {The evolution of a random vortex filament},
     journal = {Ann. Probab.},
     volume = {33},
     number = {1},
     year = {2005},
     pages = { 1825-1855},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1127395875}
}
Bessaih, Hakima; Gubinelli, Massimiliano; Russo, Francesco. The evolution of a random vortex filament. Ann. Probab., Tome 33 (2005) no. 1, pp.  1825-1855. http://gdmltest.u-ga.fr/item/1127395875/