Nonlinear Neumann problems with asymmetric nonsmooth potential
Hu, Shouchuan ; Papageorgiou, Nikolaos S.
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 417-433 / Harvested from Project Euclid
In this paper we study a scalar Neumann problem driven by the ordinary p-Lapacian and a nonsmooth potential. The nonlinearity exhibits an asymmetric behavior. Namely growth restriction is imposed in one direction only (either the positive direction or the negative direction). Using a variational approach based on the nonsmooth critical point theory for locally Lipschitz function, we prove the existence of a solution.
Publié le : 2005-09-14
Classification:  p-Laplacian,  locally function,  generalized subdifferential,  nonsmooth critical point theory,  linking sets,  asymmetric nonlinearity,  34B15
@article{1126195346,
     author = {Hu, Shouchuan and Papageorgiou, Nikolaos S.},
     title = {Nonlinear Neumann problems with asymmetric nonsmooth potential},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 417-433},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1126195346}
}
Hu, Shouchuan; Papageorgiou, Nikolaos S. Nonlinear Neumann problems with asymmetric nonsmooth potential. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  417-433. http://gdmltest.u-ga.fr/item/1126195346/