Waring's problem for cubes and squares over a finite field of even characteristic
Gallardo, Luis
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 349-362 / Harvested from Project Euclid
Let $q$ be a power of a prime $p \neq 3.$ We characterize the following two sets of polynomials: $M(q)=\{P \in {\bf F}_{q}[t]$ such that $P$ is a strict sum of cubes in ${\bf F}_{q}[t]\}$ and $S(q)=\{P \in {\bf F}_{q}[t]$ such that $P$ is a strict sum of cubes and squares in ${\bf F}_{q}[t]\}.$ Let $g(3,{\bf F}_{q}[t])=g \geq 0$ be the minimal integer such that every $P \in M(q)$ is a strict sum of $g$ cubes. Similarly let $g_1(3,2,{\bf F}_{q}[t])=g$ be the minimal integer such that every $P \in S(q)$ is a strict sum of $g$ cubes and a square. Our main result is:\begin{itemize} \item[i)] $4 \leq g(3,{\bf F}_{q}[t]) \leq 9\,\,\,$ for $q \in \{2,4\}.$ \item[ii)] $3 \leq g_1(3,2,{\bf F}_{q}[t]) \leq 4\,\,\,$ for $q =4.$ \end{itemize}
Publié le : 2005-09-14
Classification:  Waring's Problem,  Polynomials,  Finite Fields,  Characteristic 2,  11T55,  11P05,  11D85
@article{1126195340,
     author = {Gallardo, Luis},
     title = {Waring's problem for cubes and squares 
over a finite field of even characteristic},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 349-362},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1126195340}
}
Gallardo, Luis. Waring's problem for cubes and squares 
over a finite field of even characteristic. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  349-362. http://gdmltest.u-ga.fr/item/1126195340/