A Generalized Sharp Whitney Theorem for Jets
Fefferman, Charles
Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, p. 577-688 / Harvested from Project Euclid
Suppose that, for each point $x$ in a given subset $E \subset \mathbb{R}^n$, we are given an $m$-jet $f(x)$ and a convex, symmetric set $\sigma(x)$ of $m$-jets at $x$. We ask whether there exist a function $F \in C^{m , \omega} ( \mathbb{R}^n )$ and a finite constant $M$, such that the $m$-jet of $F$ at $x$ belongs to $f ( x ) + M \sigma ( x )$ for all $x \in E$. We give a necessary and sufficient condition for the existence of such $F , M$, provided each $\sigma(x)$ satisfies a condition that we call ``Whitney $\omega$-convexity''.
Publié le : 2005-03-14
Classification:  extension problems,  Whitney convexity,  Whitney $\omega$-convexity,  49K24,  52A35
@article{1123766807,
     author = {Fefferman, Charles},
     title = {A Generalized Sharp Whitney Theorem for Jets},
     journal = {Rev. Mat. Iberoamericana},
     volume = {21},
     number = {2},
     year = {2005},
     pages = { 577-688},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1123766807}
}
Fefferman, Charles. A Generalized Sharp Whitney Theorem for Jets. Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, pp.  577-688. http://gdmltest.u-ga.fr/item/1123766807/