Statistical analysis on high-dimensional spheres and shape spaces
Dryden, Ian L.
Ann. Statist., Tome 33 (2005) no. 1, p. 1643-1665 / Harvested from Project Euclid
We consider the statistical analysis of data on high-dimensional spheres and shape spaces. The work is of particular relevance to applications where high-dimensional data are available—a commonly encountered situation in many disciplines. First the uniform measure on the infinite-dimensional sphere is reviewed, together with connections with Wiener measure. We then discuss densities of Gaussian measures with respect to Wiener measure. Some nonuniform distributions on infinite-dimensional spheres and shape spaces are introduced, and special cases which have important practical consequences are considered. We focus on the high-dimensional real and complex Bingham, uniform, von Mises–Fisher, Fisher–Bingham and the real and complex Watson distributions. Asymptotic distributions in the cases where dimension and sample size are large are discussed. Approximations for practical maximum likelihood based inference are considered, and in particular we discuss an application to brain shape modeling.
Publié le : 2005-08-14
Classification:  Bingham distribution,  complex Bingham,  complex Watson,  directional data,  functional data analysis,  infinite-dimensional sphere,  shape,  sphere,  von Mises–Fisher distribution,  Watson distribution,  Wiener process,  Wiener measure,  62H11,  60G15
@article{1123250225,
     author = {Dryden, Ian L.},
     title = {Statistical analysis on high-dimensional spheres and shape spaces},
     journal = {Ann. Statist.},
     volume = {33},
     number = {1},
     year = {2005},
     pages = { 1643-1665},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1123250225}
}
Dryden, Ian L. Statistical analysis on high-dimensional spheres and shape spaces. Ann. Statist., Tome 33 (2005) no. 1, pp.  1643-1665. http://gdmltest.u-ga.fr/item/1123250225/