The sobolev embeddings are usually sharp
Fraysse, A. ; Jaffard, S.
Abstr. Appl. Anal., Tome 2005 (2005) no. 2, p. 437-448 / Harvested from Project Euclid
Let $x_0 \in \mathbb{R}^d$ ; we study the Hölder regularity at $x_0$ of a generic function of the Sobolev space $L^{p,s}(\mathbb{R}^d)$ and of the Besov space $B^{s,q}_p (\mathbb{R}^d)$ for $s-d/p >0$ . The setting for genericity is supplied here by HP-residual sets.
Publié le : 2005-06-21
Classification: 
@article{1122298460,
     author = {Fraysse, A. and Jaffard, S.},
     title = {The sobolev embeddings are usually sharp},
     journal = {Abstr. Appl. Anal.},
     volume = {2005},
     number = {2},
     year = {2005},
     pages = { 437-448},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1122298460}
}
Fraysse, A.; Jaffard, S. The sobolev embeddings are usually sharp. Abstr. Appl. Anal., Tome 2005 (2005) no. 2, pp.  437-448. http://gdmltest.u-ga.fr/item/1122298460/