Properties of typical bounded closed convex sets in Hilbert space
de Blasi, F. S. ; Zhivkov, N. V.
Abstr. Appl. Anal., Tome 2005 (2005) no. 2, p. 423-436 / Harvested from Project Euclid
For a nonempty separable convex subset $X$ of a Hilbert space ${\mathbb H}(\Omega)$ , it is typical (in the sense of Baire category) that a bounded closed convex set $C\subset{\mathbb H}(\Omega)$ defines an $m$ -valued metric antiprojection (farthest point mapping) at the points of a dense subset of $X$ , whenever $m$ is a positive integer such that $m\le \dim X+1$ .
Publié le : 2005-06-21
Classification: 
@article{1122298459,
     author = {de Blasi, F. S. and Zhivkov, N. V.},
     title = {Properties of typical bounded closed convex sets in Hilbert space},
     journal = {Abstr. Appl. Anal.},
     volume = {2005},
     number = {2},
     year = {2005},
     pages = { 423-436},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1122298459}
}
de Blasi, F. S.; Zhivkov, N. V. Properties of typical bounded closed convex sets in Hilbert space. Abstr. Appl. Anal., Tome 2005 (2005) no. 2, pp.  423-436. http://gdmltest.u-ga.fr/item/1122298459/