A porosity result in convex minimization
Howlett, P. G. ; Zaslavski, A. J.
Abstr. Appl. Anal., Tome 2005 (2005) no. 2, p. 319-326 / Harvested from Project Euclid
We study the minimization problem $f(x) \rightarrow \min$ , $x \in C$ , where $f$ belongs to a complete metric space $\mathcal{M}$ of convex functions and the set $C$ is a countable intersection of a decreasing sequence of closed convex sets $C_i$ in a reflexive Banach space. Let $\mathcal{F}$ be the set of all $f \in \mathcal{M}$ for which the solutions of the minimization problem over the set $C_i$ converge strongly as $i \rightarrow \infty$ to the solution over the set $C$ . In our recent work we show that the set $\mathcal{F}$ contains an everywhere dense $G_{\delta}$ subset of $\mathcal{M}$ . In this paper, we show that the complement $\mathcal{M} \setminus \mathcal{F}$ is not only of the first Baire category but also a $\sigma$ -porous set.
Publié le : 2005-05-25
Classification: 
@article{1122298432,
     author = {Howlett, P. G. and Zaslavski, A. J.},
     title = {A porosity result in convex minimization},
     journal = {Abstr. Appl. Anal.},
     volume = {2005},
     number = {2},
     year = {2005},
     pages = { 319-326},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1122298432}
}
Howlett, P. G.; Zaslavski, A. J. A porosity result in convex minimization. Abstr. Appl. Anal., Tome 2005 (2005) no. 2, pp.  319-326. http://gdmltest.u-ga.fr/item/1122298432/