$\sigma$-Porosity in monotonic analysis with applications to optimization
Rubinov, A. M.
Abstr. Appl. Anal., Tome 2005 (2005) no. 2, p. 287-305 / Harvested from Project Euclid
We introduce and study some metric spaces of increasing positively homogeneous (IPH) functions, decreasing functions, and conormal (upward) sets. We prove that the complements of the subset of strictly increasing IPH functions, of the subset of strictly decreasing functions, and of the subset of strictly conormal sets are $\sigma$ -porous in corresponding spaces. Some applications to optimization are given.
Publié le : 2005-05-25
Classification: 
@article{1122298430,
     author = {Rubinov, A. M.},
     title = {$\sigma$-Porosity in monotonic analysis with applications to optimization},
     journal = {Abstr. Appl. Anal.},
     volume = {2005},
     number = {2},
     year = {2005},
     pages = { 287-305},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1122298430}
}
Rubinov, A. M. $\sigma$-Porosity in monotonic analysis with applications to optimization. Abstr. Appl. Anal., Tome 2005 (2005) no. 2, pp.  287-305. http://gdmltest.u-ga.fr/item/1122298430/