On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
Lapa, E. Cabanillas ; Segura, Z. Huaringa ; Barboza, F. Leon
J. Appl. Math., Tome 2005 (2005) no. 1, p. 219-233 / Harvested from Project Euclid
We prove existence and uniform stability of strong solutions to a quasilinear wave equation with a locally distributed nonlinear dissipation with source term of power nonlinearity of the type $u''-M (\int_{\Omega}|\nabla u| ^{2}dx)\Delta u+a(x)g(u') + f(u)=0 ,$ in $\Omega\times] 0, +\infty[$ , $u=0,$ on $\Gamma\times]0, +\infty[, $ $u(x, 0)=u_{0}(x),\ u'(x,0) =u_{1}(x)$ , in $\Omega $ .
Publié le : 2005-06-30
Classification: 
@article{1122298272,
     author = {Lapa, E. Cabanillas and Segura, Z. Huaringa and Barboza, F. Leon},
     title = {On the global solvability of solutions to a quasilinear
wave equation with localized damping and source terms},
     journal = {J. Appl. Math.},
     volume = {2005},
     number = {1},
     year = {2005},
     pages = { 219-233},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1122298272}
}
Lapa, E. Cabanillas; Segura, Z. Huaringa; Barboza, F. Leon. On the global solvability of solutions to a quasilinear
wave equation with localized damping and source terms. J. Appl. Math., Tome 2005 (2005) no. 1, pp.  219-233. http://gdmltest.u-ga.fr/item/1122298272/