Jacobi-weighted orthogonal polynomials on triangular domains
Rababah, A. ; Alqudah, M.
J. Appl. Math., Tome 2005 (2005) no. 1, p. 205-217 / Harvested from Project Euclid
We construct Jacobi-weighted orthogonal polynomials $\mathcal{P}_{n,r}^{(\alpha, \beta ,\gamma)}(u,v,w), \ \alpha,\beta,\gamma > -1, \ \alpha+\beta+\gamma=0$ , on the triangular domain $T$ . We show that these polynomials $\mathcal{P}_{n,r}^{(\alpha, \beta ,\gamma)}(u,v,w)$ over the triangular domain $T$ satisfy the following properties: $\mathcal{P}_{n,r}^{(\alpha, \beta ,\gamma)}(u,v,w)\in {\mathcal L}_{n}$, $n\geq 1$ , $r=0,1,\dotsc,n,$ and ${\mathcalP}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \perp {\mathcal P}_{n,s}^{(\alpha,\beta,\gamma)}(u,v,w)$ for $r\neq s$ . And hence, ${\mathcalP}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$ , $n=0,1,2,\ldots$ , $r=0,1,\dotsc,n$ form an orthogonal system over the triangular domain $T$ with respect to the Jacobi weight function. These Jacobi-weighted orthogonal polynomials on triangular domains are given in Bernstein basis form and thus preserve many properties of the Bernstein polynomial basis.
Publié le : 2005-06-30
Classification: 
@article{1122298271,
     author = {Rababah, A. and Alqudah, M.},
     title = {Jacobi-weighted orthogonal polynomials on triangular domains},
     journal = {J. Appl. Math.},
     volume = {2005},
     number = {1},
     year = {2005},
     pages = { 205-217},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1122298271}
}
Rababah, A.; Alqudah, M. Jacobi-weighted orthogonal polynomials on triangular domains. J. Appl. Math., Tome 2005 (2005) no. 1, pp.  205-217. http://gdmltest.u-ga.fr/item/1122298271/