Random reals and possibly infinite computations Part I: Randomness in ∅'
Becher, Verónica ; Grigorieff, Serge
J. Symbolic Logic, Tome 70 (2005) no. 1, p. 891-913 / Harvested from Project Euclid
Using possibly infinite computations on universal monotone Turing machines, we prove Martin-Löf randomness in ∅' of the probability that the output be in some set 𝒪⊆2≤ω under complexity assumptions about 𝒪.
Publié le : 2005-09-14
Classification: 
@article{1122038919,
     author = {Becher, Ver\'onica and Grigorieff, Serge},
     title = {Random reals and possibly infinite computations Part I: Randomness in [?]'},
     journal = {J. Symbolic Logic},
     volume = {70},
     number = {1},
     year = {2005},
     pages = { 891-913},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1122038919}
}
Becher, Verónica; Grigorieff, Serge. Random reals and possibly infinite computations Part I: Randomness in ∅'. J. Symbolic Logic, Tome 70 (2005) no. 1, pp.  891-913. http://gdmltest.u-ga.fr/item/1122038919/