Heegaard Floer homology and contact structures
Ozsváth, Peter ; Szabó, Zoltán
Duke Math. J., Tome 126 (2005) no. 1, p. 39-61 / Harvested from Project Euclid
Given a contact structure on a closed, oriented three-manifold $Y$ , we describe an invariant that takes values in the three-manifold's Floer homology $\widehat{\HF}$ . This invariant vanishes for overtwisted contact structures and is nonzero for Stein-fillable ones. The construction uses Giroux's interpretation of contact structures in terms of open-book decompositions.
Publié le : 2005-07-15
Classification:  57R58,  53D10
@article{1121448863,
     author = {Ozsv\'ath, Peter and Szab\'o, Zolt\'an},
     title = {Heegaard Floer homology and contact structures},
     journal = {Duke Math. J.},
     volume = {126},
     number = {1},
     year = {2005},
     pages = { 39-61},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1121448863}
}
Ozsváth, Peter; Szabó, Zoltán. Heegaard Floer homology and contact structures. Duke Math. J., Tome 126 (2005) no. 1, pp.  39-61. http://gdmltest.u-ga.fr/item/1121448863/