Projective well-orderings and bounded forcing axioms
Caicedo, Andrés Eduardo
J. Symbolic Logic, Tome 70 (2005) no. 1, p. 557-572 / Harvested from Project Euclid
In the absence of Woodin cardinals, fine structural inner models for mild large cardinal hypotheses admit forcing extensions where bounded forcing axioms hold and yet the reals are projectively well-ordered.
Publié le : 2005-06-14
Classification:  Fine structure,  inner models,  strong cardinals,  Σ¹₃-absoluteness,  forcing,  bounded forcing axioms,  ψ_AC,  well-orderings,  03E15,  03E35,  03E45,  03E55
@article{1120224728,
     author = {Caicedo, Andr\'es Eduardo},
     title = {Projective well-orderings and bounded forcing axioms},
     journal = {J. Symbolic Logic},
     volume = {70},
     number = {1},
     year = {2005},
     pages = { 557-572},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1120224728}
}
Caicedo, Andrés Eduardo. Projective well-orderings and bounded forcing axioms. J. Symbolic Logic, Tome 70 (2005) no. 1, pp.  557-572. http://gdmltest.u-ga.fr/item/1120224728/