On dynamical Gaussian random walks
Khoshnevisan, Davar ; Levin, David A. ; Méndez-Hernández, Pedro J.
Ann. Probab., Tome 33 (2005) no. 1, p. 1452-1478 / Harvested from Project Euclid
Motivated by the recent work of Benjamini, Häggström, Peres and Steif [Ann. Probab. 34 (2003) 1–34] on dynamical random walks, we do the following: (i) Prove that, after a suitable normalization, the dynamical Gaussian walk converges weakly to the Ornstein–Uhlenbeck process in classical Wiener space; (ii) derive sharp tail-asymptotics for the probabilities of large deviations of the said dynamical walk; and (iii) characterize (by way of an integral test) the minimal envelope(s) for the growth-rate of the dynamical Gaussian walk. This development also implies the tail capacity-estimates of Mountford for large deviations in classical Wiener space. ¶ The results of this paper give a partial affirmative answer to the problem, raised in Benjamini, Häggström, Peres and Steif [Ann. Probab. 34 (2003) 1–34, Question 4], of whether there are precise connections between the OU process in classical Wiener space and dynamical random walks.
Publié le : 2005-07-14
Classification:  Dynamical walks,  the Ornstein–Uhlenbeck process in Wiener space,  large deviations,  upper functions,  60J25,  60J05,  60F10,  28C20
@article{1120224587,
     author = {Khoshnevisan, Davar and Levin, David A. and M\'endez-Hern\'andez, Pedro J.},
     title = {On dynamical Gaussian random walks},
     journal = {Ann. Probab.},
     volume = {33},
     number = {1},
     year = {2005},
     pages = { 1452-1478},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1120224587}
}
Khoshnevisan, Davar; Levin, David A.; Méndez-Hernández, Pedro J. On dynamical Gaussian random walks. Ann. Probab., Tome 33 (2005) no. 1, pp.  1452-1478. http://gdmltest.u-ga.fr/item/1120224587/