Generic behavior of asymptotically holomorphic Lefschetz pencils
Amor\'os, Jaume ; Mu\~noz, Vicente ; Presas, Francisco
J. Symplectic Geom., Tome 2 (2004) no. 2, p. 377-392 / Harvested from Project Euclid
We prove that the vanishing spheres of the Lefschetz pencils constructed by Donaldson on symplectic manifolds of any dimension are conjugated under the action of the symplectomorphism group of the fiber. More precisely, a number of generalized Dehn twists may be used to conjugate those spheres. This implies the non-existence of homologically trivial vanishing spheres in these pencils. To develop the proof, we discuss some basic topological properties of the space of asymptotically holomorphic transverse sections.
Publié le : 2004-09-14
Classification: 
@article{1118755326,
     author = {Amor\'os, Jaume and Mu\\textasciitilde noz, Vicente and Presas, Francisco},
     title = {Generic behavior of asymptotically holomorphic Lefschetz pencils},
     journal = {J. Symplectic Geom.},
     volume = {2},
     number = {2},
     year = {2004},
     pages = { 377-392},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1118755326}
}
Amor\'os, Jaume; Mu\~noz, Vicente; Presas, Francisco. Generic behavior of asymptotically holomorphic Lefschetz pencils. J. Symplectic Geom., Tome 2 (2004) no. 2, pp.  377-392. http://gdmltest.u-ga.fr/item/1118755326/