Floer homology of certain pseudo-Anosov maps
Eftekhary, Eaman
J. Symplectic Geom., Tome 2 (2004) no. 2, p. 357-375 / Harvested from Project Euclid
Floer cohomology is computed for the elements of the mapping class group of a surface $\Sigma$ of genus $g>1$ which are compositions of positive and negative Dehn twists along loops in $\Sigma$ forming a tree-pattern. The computations cover a certain class of pseudo-Anosov maps.
Publié le : 2004-09-14
Classification: 
@article{1118755325,
     author = {Eftekhary, Eaman},
     title = {Floer homology of certain pseudo-Anosov maps},
     journal = {J. Symplectic Geom.},
     volume = {2},
     number = {2},
     year = {2004},
     pages = { 357-375},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1118755325}
}
Eftekhary, Eaman. Floer homology of certain pseudo-Anosov maps. J. Symplectic Geom., Tome 2 (2004) no. 2, pp.  357-375. http://gdmltest.u-ga.fr/item/1118755325/