We show a general method to translate Tauberian theorems for summability
methods in $\mathbb R$ into Tauberian theorems for the corresponding forms of
statistical convergence in metric spaces. The main tools (distance functions
and the Hausdorff metric) come from set-valued analysis.
@article{1117805090,
author = {Ter\'an, Pedro},
title = {A reduction principle for obtaining Tauberian theorems for statistical convergence in metric spaces},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {11},
number = {5},
year = {2005},
pages = { 295-299},
language = {en},
url = {http://dml.mathdoc.fr/item/1117805090}
}
Terán, Pedro. A reduction principle for obtaining Tauberian theorems for statistical convergence in metric spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp. 295-299. http://gdmltest.u-ga.fr/item/1117805090/