On Certain Differential Subordination and its Dominant
Singh, Sukhjit ; Gupta, Sushma
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 259-274 / Harvested from Project Euclid
Denote by $\cal A'$, the class of functions $f$, analytic in $E$ which satisfy $f(0)=1$. Let $\alpha >0, \beta \in (0,1]$ be real numbers and let $\gamma, {\rm Re} \gamma >0$, be a complex number. For $p, q \in \cal A'$, the authors study the differential subordination of the form $$(p(z))^\alpha \left[1+\frac {\gamma zp'(z)}{p(z)}\right]^\beta \prec(q(z))^\alpha \left[1+\frac {\gamma zq'(z)}{q(z)}\right]^\beta, z\in E,$$ and obtain its best dominant. Its applications to univalent functions are also given.
Publié le : 2005-04-14
Classification:  Univalent Function,  Convex Function,  Differential Subordination,  30C45,  30C50
@article{1117805088,
     author = {Singh, Sukhjit and Gupta, Sushma},
     title = {On Certain Differential Subordination and its Dominant},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 259-274},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1117805088}
}
Singh, Sukhjit; Gupta, Sushma. On Certain Differential Subordination and its Dominant. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  259-274. http://gdmltest.u-ga.fr/item/1117805088/