Nonvanishing of $L$ -functions for $\GL(n, \mathbf{A}_Q)$
Luo, Wenzhi
Duke Math. J., Tome 126 (2005) no. 1, p. 199-207 / Harvested from Project Euclid
In this work, we establish new nonvanishing results for automorphic $L$ -functions on $\GL(n, \mathbf{A}_Q)$ . In particular, we show that, given a cuspidal automorphic form $\pi$ on $\GL(3, \mathbf{A}_Q)$ and an arbitrary point $s_{0} \in {\bf C}$ , there exist infinitely many Dirichlet characters $\chi$ with prescribed ramification such that the twisted completed $L$ -functions do not vanish at $s_{0}$ : $\Lambda (s_{0}, \pi \otimes \chi) \neq 0$ .
Publié le : 2005-06-01
Classification:  11F67,  11F70
@article{1117728415,
     author = {Luo, Wenzhi},
     title = {Nonvanishing of $L$ -functions for $\GL(n, \mathbf{A}\_Q)$},
     journal = {Duke Math. J.},
     volume = {126},
     number = {1},
     year = {2005},
     pages = { 199-207},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1117728415}
}
Luo, Wenzhi. Nonvanishing of $L$ -functions for $\GL(n, \mathbf{A}_Q)$. Duke Math. J., Tome 126 (2005) no. 1, pp.  199-207. http://gdmltest.u-ga.fr/item/1117728415/