We propose new data-driven smooth tests for a parametric regression function. The smoothing parameter is selected through a new criterion that favors a large smoothing parameter under the null hypothesis. The resulting test is adaptive rate-optimal and consistent against Pitman local alternatives approaching the parametric model at a rate arbitrarily close to $1/\sqrt{n}$ . Asymptotic critical values come from the standard normal distribution and the bootstrap can be used in small samples. A general formalization allows one to consider a large class of linear smoothing methods, which can be tailored for detection of additive alternatives.