Integral geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in $S^2 \times S^2$
Iriyeh, Hiroshi ; Ono, Hajime ; Sakai, Takashi
Proc. Japan Acad. Ser. A Math. Sci., Tome 79 (2003) no. 3, p. 167-170 / Harvested from Project Euclid
We prove that the product of equators $S^1 \times S^1$ in $S^2 \times S^2$ is globally volume minimizing under Hamiltonian deformations.
Publié le : 2003-12-14
Classification:  Lagrangian submanifold,  Poincaré formula,  Hamiltonian stability,  53C40,  53C65
@article{1116443827,
     author = {Iriyeh, Hiroshi and Ono, Hajime and Sakai, Takashi},
     title = {Integral geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in $S^2 \times S^2$},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {79},
     number = {3},
     year = {2003},
     pages = { 167-170},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1116443827}
}
Iriyeh, Hiroshi; Ono, Hajime; Sakai, Takashi. Integral geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in $S^2 \times S^2$. Proc. Japan Acad. Ser. A Math. Sci., Tome 79 (2003) no. 3, pp.  167-170. http://gdmltest.u-ga.fr/item/1116443827/