On Poincaré sums for local fields
Ono, Takashi
Proc. Japan Acad. Ser. A Math. Sci., Tome 79 (2003) no. 3, p. 115-118 / Harvested from Project Euclid
Let $K/k$ be a finite Galois extension of local fields. To each class $\gamma = [c]$ in $H^1(\operatorname{Gal}(K/k), U_K)$, $U_K$ being the group of units of $K$, we associate an index $i_\gamma(K/k) = (M_c : P_c)$ after the model of Poincaré series and study its relation to the ramification theory of $K/k$.
Publié le : 2003-09-14
Classification:  $\mathfrak {p}$-adic fields,  cohomology groups,  differents,  ramifications,  cyclotomic fields,  11F85
@article{1116443702,
     author = {Ono, Takashi},
     title = {On Poincar\'e sums for local fields},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {79},
     number = {3},
     year = {2003},
     pages = { 115-118},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1116443702}
}
Ono, Takashi. On Poincaré sums for local fields. Proc. Japan Acad. Ser. A Math. Sci., Tome 79 (2003) no. 3, pp.  115-118. http://gdmltest.u-ga.fr/item/1116443702/