Let $K/k$ be a finite Galois extension of local fields. To
each class $\gamma = [c]$ in $H^1(\operatorname{Gal}(K/k), U_K)$,
$U_K$ being the group of units of $K$, we associate
an index $i_\gamma(K/k) = (M_c : P_c)$ after the model of Poincaré
series and study its relation to the ramification theory of
$K/k$.
@article{1116443702,
author = {Ono, Takashi},
title = {On Poincar\'e sums for local fields},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {79},
number = {3},
year = {2003},
pages = { 115-118},
language = {en},
url = {http://dml.mathdoc.fr/item/1116443702}
}
Ono, Takashi. On Poincaré sums for local fields. Proc. Japan Acad. Ser. A Math. Sci., Tome 79 (2003) no. 3, pp. 115-118. http://gdmltest.u-ga.fr/item/1116443702/