An optimal inequality and an extremal class of graph hypersurfaces in affine geometry
Chen, Bang-Yen
Proc. Japan Acad. Ser. A Math. Sci., Tome 80 (2004) no. 6, p. 123-128 / Harvested from Project Euclid
We discover a general optimal inequality for graph hypersurfaces in affine $(n + 1)$-space $\mathbf{R}^{n+1}$ involving the Tchebychev vector field. We also completely classify the hypersurfaces which verify the equality case of the inequality.
Publié le : 2004-09-14
Classification:  Optimal inequality,  graph hypersurface,  extremal class,  53A15,  53C40,  53B20,  53B25
@article{1116442328,
     author = {Chen, Bang-Yen},
     title = {An optimal inequality and an extremal class of graph hypersurfaces in affine geometry},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {80},
     number = {6},
     year = {2004},
     pages = { 123-128},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1116442328}
}
Chen, Bang-Yen. An optimal inequality and an extremal class of graph hypersurfaces in affine geometry. Proc. Japan Acad. Ser. A Math. Sci., Tome 80 (2004) no. 6, pp.  123-128. http://gdmltest.u-ga.fr/item/1116442328/