On a theorem of Scholz on the class number of quadratic fields
Nemenzo, Fidel R.
Proc. Japan Acad. Ser. A Math. Sci., Tome 80 (2004) no. 6, p. 9-11 / Harvested from Project Euclid
Let $p$ and $q$ be distinct primes such that $p \equiv q \pmod{4}$ and consider the quadratic field $K = \mathbf{Q}(\sqrt{pq})$. In this paper, we shall investigate the class group and determine the exact power of 2 dividing the class number of $K$ using the theory of ideals and a theorem on the solvability of $ax^2 + by^2 = z^2$.
Publié le : 2004-02-14
Classification:  Quadratic fields,  class number,  residue characters,  11R29,  11R11
@article{1116442123,
     author = {Nemenzo, Fidel R.},
     title = {On a theorem of Scholz on the class number of quadratic fields},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {80},
     number = {6},
     year = {2004},
     pages = { 9-11},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1116442123}
}
Nemenzo, Fidel R. On a theorem of Scholz on the class number of quadratic fields. Proc. Japan Acad. Ser. A Math. Sci., Tome 80 (2004) no. 6, pp.  9-11. http://gdmltest.u-ga.fr/item/1116442123/