The normalized $L^2$-norm of the traceless part of the Ricci
curvature defines a Riemannian functional on the space of Riemannian
metrics. In this paper, we will consider the critical Riemannian
metrics with a flat conformal structure for this functional.
@article{1116442056,
author = {Katagiri, Minyo},
title = {On conformally flat critical Riemannian metrics for a curvature functional},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {81},
number = {3},
year = {2005},
pages = { 27-29},
language = {en},
url = {http://dml.mathdoc.fr/item/1116442056}
}
Katagiri, Minyo. On conformally flat critical Riemannian metrics for a curvature functional. Proc. Japan Acad. Ser. A Math. Sci., Tome 81 (2005) no. 3, pp. 27-29. http://gdmltest.u-ga.fr/item/1116442056/