On conformally flat critical Riemannian metrics for a curvature functional
Katagiri, Minyo
Proc. Japan Acad. Ser. A Math. Sci., Tome 81 (2005) no. 3, p. 27-29 / Harvested from Project Euclid
The normalized $L^2$-norm of the traceless part of the Ricci curvature defines a Riemannian functional on the space of Riemannian metrics. In this paper, we will consider the critical Riemannian metrics with a flat conformal structure for this functional.
Publié le : 2005-02-14
Classification:  Critical Riemannian metrics,  Riemannian functionals,  58E11,  53C25
@article{1116442056,
     author = {Katagiri, Minyo},
     title = {On conformally flat critical Riemannian metrics for a curvature functional},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {81},
     number = {3},
     year = {2005},
     pages = { 27-29},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1116442056}
}
Katagiri, Minyo. On conformally flat critical Riemannian metrics for a curvature functional. Proc. Japan Acad. Ser. A Math. Sci., Tome 81 (2005) no. 3, pp.  27-29. http://gdmltest.u-ga.fr/item/1116442056/