Real spectrum of ring of definable functions
Fujita, Masato
Proc. Japan Acad. Ser. A Math. Sci., Tome 80 (2004) no. 6, p. 116-121 / Harvested from Project Euclid
Consider an o-minimal expansion of the real field. We deal with the real spectrums of the ring $C_{\mathrm{df}}^r$ of definable $C^r$ functions on an affine definable $C^r$ manifold $M$ in the present paper. Here $r$ denotes a nonnegative integer. We show that the natural map $\operatorname{Sper}(C_{\mathrm{df}}^r(M)) \rightarrow \operatorname{Spec}(C_{\mathrm{df}}^r(M))$ is a homeomorphism when the o-minimal structure is polynomially bounded. If the o-minimal structure is not polynomially bounded, it is not known whether the natural map $\operatorname{Sper}(C_{\mathrm{df}}^r(M)) \rightarrow \operatorname{Spec}(C_{\mathrm{df}}^r(M))$ is a homeomorphism or not. However, the natural map $\operatorname{Sper}(C_{\mathrm{df}}^0(M)) \rightarrow \operatorname{Spec}(C_{\mathrm{df}}^0(M))$ is bijective even in this case.
Publié le : 2004-06-14
Classification:  O-minimal,  real spectrum,  Artin-Lang property,  03C64,  13J30
@article{1116014789,
     author = {Fujita, Masato},
     title = {Real spectrum of ring of definable functions},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {80},
     number = {6},
     year = {2004},
     pages = { 116-121},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1116014789}
}
Fujita, Masato. Real spectrum of ring of definable functions. Proc. Japan Acad. Ser. A Math. Sci., Tome 80 (2004) no. 6, pp.  116-121. http://gdmltest.u-ga.fr/item/1116014789/