Rescaled Lotka–Volterra models converge to super-Brownian motion
Cox, J. Theodore ; Perkins, Edwin A.
Ann. Probab., Tome 33 (2005) no. 1, p. 904-947 / Harvested from Project Euclid
We show that a sequence of stochastic spatial Lotka–Volterra models, suitably rescaled in space and time, converges weakly to super-Brownian motion with drift. The result includes both long range and nearest neighbor models, the latter for dimensions three and above. These theorems are special cases of a general convergence theorem for perturbations of the voter model.
Publié le : 2005-05-14
Classification:  Lotka–Volterra,  voter model,  super-Brownian motion,  spatial competition,  coalescing random walk,  60K35,  60G57,  60F17,  60J80
@article{1115386714,
     author = {Cox, J. Theodore and Perkins, Edwin A.},
     title = {Rescaled Lotka--Volterra models converge to super-Brownian motion},
     journal = {Ann. Probab.},
     volume = {33},
     number = {1},
     year = {2005},
     pages = { 904-947},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1115386714}
}
Cox, J. Theodore; Perkins, Edwin A. Rescaled Lotka–Volterra models converge to super-Brownian motion. Ann. Probab., Tome 33 (2005) no. 1, pp.  904-947. http://gdmltest.u-ga.fr/item/1115386714/