Interpolation and extrapolation of smooth functions by linear operators
Fefferman, Charles
Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, p. 313-348 / Harvested from Project Euclid
Let $C^{m , 1} ( \mathbb{R}^n)$ be the space of functions on $\mathbb{R}^n$ whose $m^{\sf th}$ derivatives are Lipschitz 1. For $E \subset \mathbb{R}^n$, let $C^{m , 1} (E)$ be the space of all restrictions to $E$ of functions in $C^{m,1} ( \mathbb{R}^n)$. We show that there exists a bounded linear operator $T: C^{m , 1} (E) \rightarrow C^{m , 1} ( \mathbb{R}^n)$ such that, for any $f \in C^{m , 1} ( E )$, we have $T f = f$ on $E$.
Publié le : 2005-03-15
Classification:  Whitney extension problem,  linear operators,  49K24,  52A35
@article{1114176236,
     author = {Fefferman, Charles},
     title = {Interpolation and extrapolation of smooth functions by linear operators},
     journal = {Rev. Mat. Iberoamericana},
     volume = {21},
     number = {2},
     year = {2005},
     pages = { 313-348},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1114176236}
}
Fefferman, Charles. Interpolation and extrapolation of smooth functions by linear operators. Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, pp.  313-348. http://gdmltest.u-ga.fr/item/1114176236/