Quasinormal Families of Meromorphic Functions
Pang, Xuecheng ; Nevo, Shahar ; Zalcman, Lawrence
Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, p. 249-262 / Harvested from Project Euclid
Let $\mathcal{F}$ be a family of functions meromorphic on the plane domain $D$, all of whose zeros are multiple. Suppose that $f'(z)\ne 1$ for all $f\in \mathcal{F}$ and $z\in D.$ Then if $\mathcal{F}$ is quasinormal on $D$, it is quasinormal of order 1 there.
Publié le : 2005-03-15
Classification:  quasinormal families,  omitted values,  30D45
@article{1114176234,
     author = {Pang, Xuecheng and Nevo, Shahar and Zalcman, Lawrence},
     title = {Quasinormal Families of Meromorphic Functions},
     journal = {Rev. Mat. Iberoamericana},
     volume = {21},
     number = {2},
     year = {2005},
     pages = { 249-262},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1114176234}
}
Pang, Xuecheng; Nevo, Shahar; Zalcman, Lawrence. Quasinormal Families of Meromorphic Functions. Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, pp.  249-262. http://gdmltest.u-ga.fr/item/1114176234/