A note on the existence of $H$-bubbles via perturbation methods
Felli, Veronica
Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, p. 163-178 / Harvested from Project Euclid
We study the problem of existence of surfaces in $\mathbb{R}^3$ parametrized on the sphere ${\mathbb S}^2$ with prescribed mean curvature $H$ in the perturbative case, i.e. for $H=H_0+\varepsilon H_1$, where $H_0$ is a nonzero constant, $H_1$ is a $C^2$ function and $\varepsilon$ is a small perturbation parameter.
Publié le : 2005-03-15
Classification:  $H$-surfaces,  nonlinear elliptic systems,  perturbative methods,  53A10,  35J50,  35B20
@article{1114176231,
     author = {Felli, Veronica},
     title = {A note on the existence of $H$-bubbles via perturbation methods},
     journal = {Rev. Mat. Iberoamericana},
     volume = {21},
     number = {2},
     year = {2005},
     pages = { 163-178},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1114176231}
}
Felli, Veronica. A note on the existence of $H$-bubbles via perturbation methods. Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, pp.  163-178. http://gdmltest.u-ga.fr/item/1114176231/