We study the problem of existence of surfaces in $\mathbb{R}^3$
parametrized on the sphere ${\mathbb S}^2$ with prescribed mean
curvature $H$ in the perturbative case, i.e. for $H=H_0+\varepsilon H_1$,
where $H_0$ is a nonzero constant, $H_1$ is a $C^2$ function and
$\varepsilon$ is a small perturbation parameter.
@article{1114176231,
author = {Felli, Veronica},
title = {A note on the existence of $H$-bubbles via perturbation methods},
journal = {Rev. Mat. Iberoamericana},
volume = {21},
number = {2},
year = {2005},
pages = { 163-178},
language = {en},
url = {http://dml.mathdoc.fr/item/1114176231}
}
Felli, Veronica. A note on the existence of $H$-bubbles via perturbation methods. Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, pp. 163-178. http://gdmltest.u-ga.fr/item/1114176231/