In this paper we compute the obstruction and the solutions of
cyclic embedding problems given by
$$
(E): \quad 0 \rightarrow \mathbb{Z}/n\mathbb{Z} \rightarrow E \rightarrow \Gamma=\mathbb{Z}/n\mathbb{Z}
\times \stackrel{m)}{\cdots} \times \mathbb{Z}/n\mathbb{Z} \rightarrow 0 ,
$$
with $\mathbb{Z}/n\mathbb{Z}$ trivial $\Gamma$-modulo, finding adequate
representations of $\Gamma$ in the automorphisms group of a
generalized Clifford algebra.
@article{1114176229,
author = {Vela, Montserrat},
title = {Resolution of a family of Galois embedding problems with cyclic kernel},
journal = {Rev. Mat. Iberoamericana},
volume = {21},
number = {2},
year = {2005},
pages = { 111-132},
language = {en},
url = {http://dml.mathdoc.fr/item/1114176229}
}
Vela, Montserrat. Resolution of a family of Galois embedding problems with cyclic kernel. Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, pp. 111-132. http://gdmltest.u-ga.fr/item/1114176229/