Resolution of a family of Galois embedding problems with cyclic kernel
Vela, Montserrat
Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, p. 111-132 / Harvested from Project Euclid
In this paper we compute the obstruction and the solutions of cyclic embedding problems given by $$ (E): \quad 0 \rightarrow \mathbb{Z}/n\mathbb{Z} \rightarrow E \rightarrow \Gamma=\mathbb{Z}/n\mathbb{Z} \times \stackrel{m)}{\cdots} \times \mathbb{Z}/n\mathbb{Z} \rightarrow 0 , $$ with $\mathbb{Z}/n\mathbb{Z}$ trivial $\Gamma$-modulo, finding adequate representations of $\Gamma$ in the automorphisms group of a generalized Clifford algebra.
Publié le : 2005-03-15
Classification:  Galois embedding problems,  generalized Clifford algebras,  12F12,  11R32,  11E88
@article{1114176229,
     author = {Vela, Montserrat},
     title = {Resolution of a family of Galois embedding problems with cyclic kernel},
     journal = {Rev. Mat. Iberoamericana},
     volume = {21},
     number = {2},
     year = {2005},
     pages = { 111-132},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1114176229}
}
Vela, Montserrat. Resolution of a family of Galois embedding problems with cyclic kernel. Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, pp.  111-132. http://gdmltest.u-ga.fr/item/1114176229/